博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
POJ 3264 Balanced Lineup【线段树区间查询求最大值和最小值】
阅读量:6172 次
发布时间:2019-06-21

本文共 3429 字,大约阅读时间需要 11 分钟。

Balanced Lineup

Time Limit: 5000MS   Memory Limit: 65536K
Total Submissions: 53703   Accepted: 25237
Case Time Limit: 2000MS

Description

For the daily milking, Farmer John's N cows (1 ≤ N ≤ 50,000) always line up in the same order. One day Farmer John decides to organize a game of Ultimate Frisbee with some of the cows. To keep things simple, he will take a contiguous range of cows from the milking lineup to play the game. However, for all the cows to have fun they should not differ too much in height.

Farmer John has made a list of Q (1 ≤ Q ≤ 200,000) potential groups of cows and their heights (1 ≤ height ≤ 1,000,000). For each group, he wants your help to determine the difference in height between the shortest and the tallest cow in the group.

Input

Line 1: Two space-separated integers,
N and
Q.
Lines 2..
N+1: Line
i+1 contains a single integer that is the height of cow
i
Lines
N+2..
N+
Q+1: Two integers
A and
B (1 ≤
A
B
N), representing the range of cows from
A to
B inclusive.

Output

Lines 1..
Q: Each line contains a single integer that is a response to a reply and indicates the difference in height between the tallest and shortest cow in the range.

Sample Input

6 31734251 54 62 2

Sample Output

630

Source

题目链接:
分析:线段树求最大值和最小值,然后最大值减去最小值即为正解!貌似这题好像有暴力写法?
下面给出AC代码:
1 #include 
2 #include
3 #include
4 using namespace std; 5 #define maxsize 200020 6 typedef struct 7 { 8 int left,right; 9 int maxn;10 int minn;11 }Node;12 int n,m;13 int Max,Min;14 int num[maxsize];15 Node tree[maxsize*20];16 inline void buildtree(int root,int left,int right)// 构建线段树17 {18 int mid;19 tree[root].left=left;20 tree[root].right=right;// 当前节点所表示的区间21 if(left==right)// 左右区间相同,则此节点为叶子,max 应储存对应某个学生的值22 {23 tree[root].maxn=num[left];24 tree[root].minn=num[left];25 return;26 }27 mid=(left+right)/2;28 //int a,b;// 递归建立左右子树,并从子树中获得最大值29 buildtree(2*root,left,mid);30 buildtree(2*root+1,mid+1,right);31 tree[root].maxn=max(tree[root*2].maxn,tree[root*2+1].maxn);32 tree[root].minn=min(tree[root*2].minn,tree[root*2+1].minn);33 }34 inline void find(int root,int left,int right)// 从节点 root 开始,查找 left 和 right 之间的最大值35 {36 int mid;37 //if(tree[root].left>right||tree[root].right
mid)49 find(root*2+1,left,right);50 else51 {52 find(root*2,left,mid);53 find(root*2+1,mid+1,right);54 //tree[root].maxn=max(tree[root*2].maxn,tree[root*2+1].maxn);55 //tree[root].minn=min(tree[root*2].minn,tree[root*2+1].minn);56 //return;57 }58 }59 60 int main()61 {62 //char c;63 int i;64 int x,y;65 //scanf("d%d",&n,&m);66 while(scanf("%d%d",&n,&m)!=EOF)67 {68 for(i=1;i<=n;i++)69 scanf("%d",&num[i]);70 buildtree(1,1,n);71 for(i=1;i<=m;i++)72 {73 //getchar();74 Max=-99999999999;75 Min= 99999999999;76 scanf("%d%d",&x,&y);77 //if(c=='Q')78 //printf("%d\n",find(1,x,y));79 //else80 //{81 // num[x]=y;82 // update(1,x,y);83 //}84 find(1,x,y);85 printf("%d\n",Max-Min);86 }87 }88 return 0;89 }

 

转载于:https://www.cnblogs.com/ECJTUACM-873284962/p/7133096.html

你可能感兴趣的文章
跨Navigation跳转(类似微信)方案二
查看>>
JavaScript 复习之 对象的继承
查看>>
从开源小白到 Apache Member,我的成长之路
查看>>
logstash简介
查看>>
Java多线程之synchronized理论
查看>>
Android NestedScrolling解决滑动冲突问题(2) - fling问题与NestedScroll++
查看>>
Tomcat和JVM的性能调优总结
查看>>
硬件线程和软件线程的区别
查看>>
时间戳前
查看>>
11月22日晚上海交大《PMI敏捷实践指南解读》线上沙龙欢迎你的参与!
查看>>
初识 Linux (VMware、CentOS 7)
查看>>
使用SpringMVC完成文件上传
查看>>
mysql Load Data InFile 的用法
查看>>
Go new vs make
查看>>
【云宏大讲坛】超融合,融合的不仅是基础架构
查看>>
pytnon入门的一些小实例
查看>>
ubuntu下的dock工具
查看>>
饿了么被上海市市场监督局予以警告处分
查看>>
Java项目读取配置文件时,找不到指定的文件???
查看>>
lua/luajit and tcc
查看>>